

NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A PLANE SURFACE DUE TO ANNULAR SWIRLING TURBULENT JET IMPINGEMENT

Farhana Afroz and Muhammad A.R. Sharif
Aerospace Engineering and Mechanics Department
The University of Alabama
Tuscaloosa, Alabama, USA

Impinging Jet Configuration

Plain surface impingement

Reproduced from Cho et al. (2011), Cooling Systems: Energy, Engineering and Applications

Annular Jet Configuration

516 W. T. Chan and N. W. M. Ko

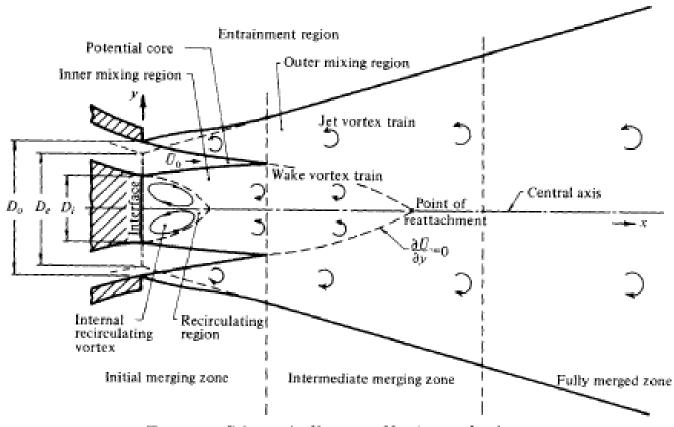


Figure 1. Schematic diagram of basic annular jet.

INTRODUCTION

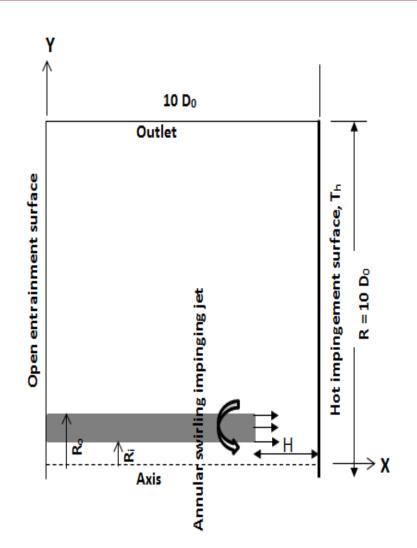
- Cooling of hot surfaces by impinging jets is an effective and age-old cooling method.
- Due to high rates of localized heat transfer, impinging jet flows are employed in a wide variety of applications of practical interest.
- Numerous studies have been conducted on impingement jets over the years with various combinations of geometric and flow configurations.
- Major sub-group of these studies include non-swirling and swirling round and annular jet impingement heat transfer.

INTRODUCTION (contd.)

- Swirl alters the jet spreading rate, which in turn alters the heat transfer characteristics.
- The jet growth, ambient fluid entrainment, jet decay, etc., is influenced by the swirl.
- Published studies dealing with swirling annular impinging jet are not plentiful.
- Important to investigate the swirling jet impingement heat transfer.
- Understand the overall flow physics and the pros and cons of using swirl.

INTRODUCTION (contd.)

- In this study, the heat transfer from an isothermal hot circular surface due to non-swirling and swirling turbulent annular impinging open jets has been investigated.
- The flow is investigated for a range of the swirl intensity and jet-to-impingement surface distance at a specific Reynolds number.



NUMERICAL PROCESS

- Computations are done using the ANSYS FLUENT CFD code.
- The realizable k-ε turbulence model with enhanced wall function and a very fine mesh near the wall is used in the computation.
- The mesh resolution was chosen after systematic mesh refinement study and validation against experimental data.
- Conservation equations for mass, momentum, and energy are solved.
- Second order upwind scheme for the convection terms and central differencing for the diffusion terms.
- The SIMPLE method for the pressure-velocity coupling.
- The governing equations are solved sequentially.
- Converged when the normalized residual falls below 10⁻⁶ for all variables.

PROBLEM GEOMETRY

PROBLEM PARAMETERS

- Jet Diameter: $D_0 = 0.03 \text{ m}$, $D_i = 0.0225 \text{ m}$, $D_i/D_0 = 0.75$.
- Jet exit Reynolds number, Re = 5,000.
- Prandtl number, Pr = 0.71 (air).
- Jet to impingement surface spacing (H/D_o): 0.5 8.
- Swirl strength or swirl number, SW = 0, 0.21, 0.44, 0.77, and 1.
- Various combinations of these parameters are considered.
- Total of 40 combinations of H/D_o and SW are considered.

GOVERNING EQUATIONS

Continuity equation

$$\bullet \quad \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{1}{\mathbf{v}} \frac{\partial (\mathbf{y}\mathbf{v})}{\partial \mathbf{y}} = 0 \tag{1}$$

Momentum equation

•
$$\frac{\partial u^2}{\partial x} + \frac{1}{y} \frac{\partial (vu)}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\partial (\tau_{xx})}{\partial x} + \frac{1}{y} \frac{\partial (\tau_{xy})}{\partial y}$$
 (2)

•
$$\frac{\partial(uv)}{\partial x} + \frac{1}{y} \frac{\partial(yv^2)}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{\partial(\tau_{xy})}{\partial x} + \frac{1}{y} \frac{\partial(y\tau_{yy})}{\partial y} - \frac{\tau_{zz}}{y}$$
 (3)

•
$$\frac{\partial (uw)}{\partial x} + \frac{1}{y} \frac{\partial (yvw)}{\partial y} - \frac{vw}{y} = \frac{\partial (\tau_{xz})}{\partial x} + \frac{1}{y^2} \frac{\partial (y^2 \tau_{yz})}{\partial y}$$
 (4)

Energy equation

•
$$\frac{\partial (uT)}{\partial x} + \frac{1}{y} \frac{\partial (yvT)}{\partial y} = \frac{1}{\rho c_p} \left[\frac{\partial (q_x)}{\partial x} + \frac{1}{y} \frac{\partial (yq_y)}{\partial y} \right]$$
 (5)

BOUNDARY CONDITIONS

- Uniform axial velocity, solid body rotation swirl velocity, and cold temperature (300 K) at the jet inlet.
- No-slip at all wall and isothermally hot boundary condition (315 K) for the impingement surface.
- Constant pressure-outlet condition at the left entrainment boundary and at the outlet section where the variables are extrapolated from inside.

SWIRL STRENGTH

$$SW = \frac{Azimuthal\ momentum}{Axial\ momentum}$$

$$SW = \frac{\int_{jet \ inlet} \rho uw \ (ydy)}{\int_{jet \ inlet} \rho uu \ (ydy)}$$

$$SW = \frac{\omega}{U_{in}} \frac{\int_{D_i/2}^{D_o/2} y^2 dy}{\int_{D_i/2}^{D_o/2} y dy} = \frac{1}{3} \frac{\omega(D_o - D_i)}{U_{in}}$$

$$\omega = 3 \ (SW) \ U_{in} / (D_o - D_i)$$

RESULTS (SW = 0)

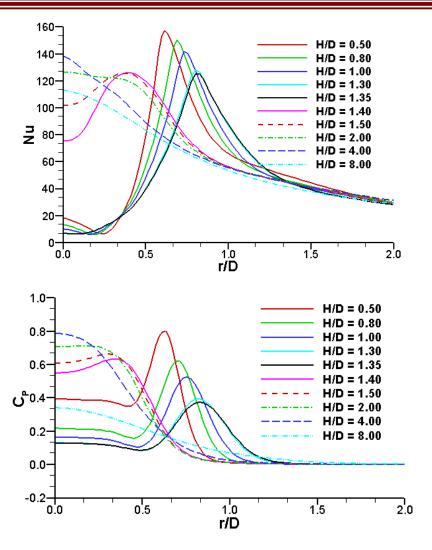
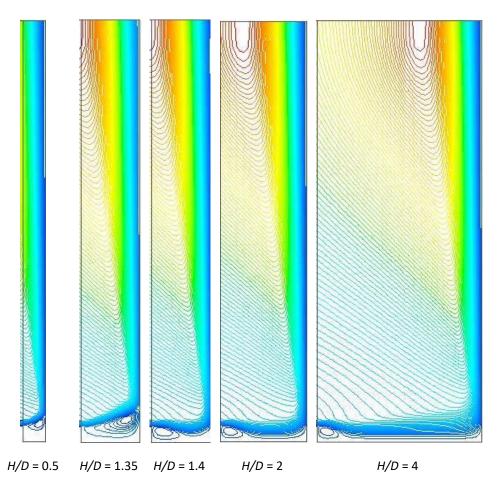
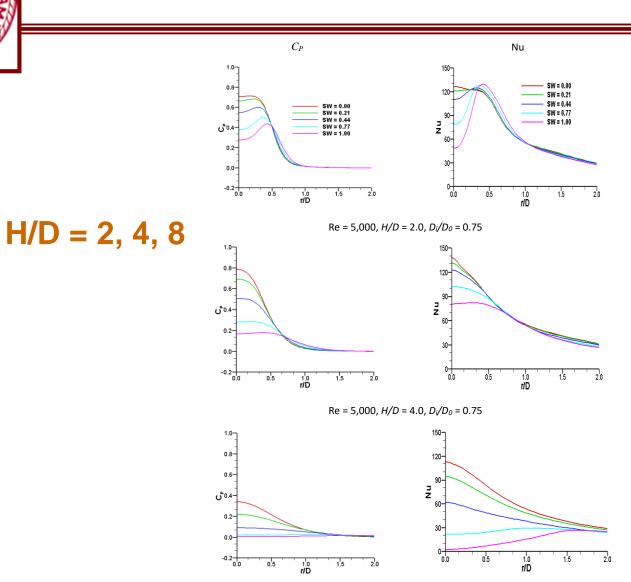
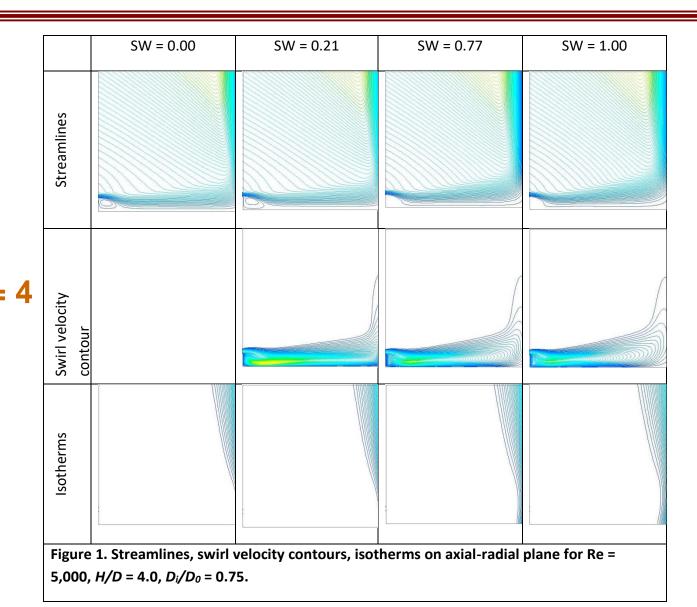


Figure 1. Local Nusselt number and pressure coefficient along radial direction on the hot plate at different jet-to-plate separation distance, H/D for Re = 5,000, D_i/D_0 = 0.75.


Figure 1. Streamline contour on axial-radial plane for different jet-to-plate separation distance, H/D for Re = 5,000, D_i/D_0 = 0.75.

Re = 5,000, H/D = 8.0, D_i/D_0 = 0.75

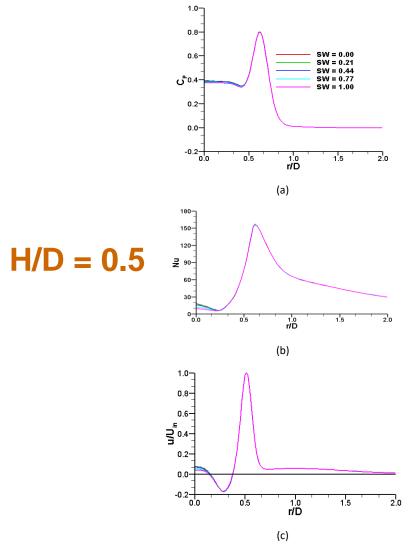


Figure 1. Distribution of (a) pressure coefficient, (b) local nusselt number, and (c) axial component of velocity along radial direction hot plate for Re = 5,000, H/D = 0.5, $D_i/D_0 = 0.75$.

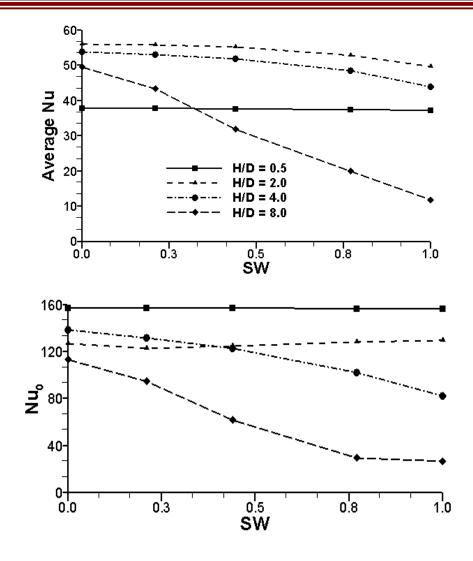


Figure 1.Effect of swirling on variation of average Nusselt number and stagnation point Nusselt number, Nu₀, for various jet-to-plate separation distances.

CONCLUSIONS

- Three different jet-to-target separation distance ranges are identified.
- **Each range affects flow structure and heat transfer differently.**
- Shorter jet-to-target separation distances cause reverse stagnation flow.
- Swirl does not improve the reverse stagnation flow and does not offer any improvement of heat transfer and flow structure.
- Swirl causes the pressure coefficient and Nusselt number distribution more uniform.
- At very large separation distance (H/D = 8), higher swirl strength (SW ≥ 0.77) causes reverse stagnation flow and heat transfer reduces rapidly with increasing swirl strength.
- Studies need to be done for a wider range of Reynolds number and diameter ratio.
- Realistic inlet swirl velocity profile should be used.

Questions?

Thank you.